Question		Answer	Marks	Guidance		
1		$\int_{1}^{2} \frac{1}{\sqrt{3x-2}} dx = \left[\frac{2}{3}(3x-2)^{1/2}\right]_{1}^{2}$	M1 A2	$[k (3x - 2)^{1/2}] k = 2/3$		
		$= \frac{2}{3} \cdot 2 - \frac{2}{3} \cdot 1$ $= 2/3^*$	M1dep A1	substituting limits dep 1 st M1 NB AG		
		OR $u = 3x - 2 \Rightarrow \frac{du}{dx} = 3$ $\Rightarrow \int_{1}^{2} \frac{1}{\sqrt{3x - 2}} dx = \int_{1}^{4} \frac{1}{\sqrt{u}} \cdot \frac{1}{3} du$ $= \left[\frac{2}{3}u^{1/2}\right]^{4} = \frac{2}{3} \cdot 2 - \frac{2}{3} \cdot 1$	M1 A1 A1	$\int \frac{1}{\sqrt{u}} \times \frac{1}{3} (du)$ $\left[\frac{2}{3} u^{1/2}\right] 0.$	or $w^2 = 3x - 2 \Rightarrow \int \frac{1}{w}$ × 2/3 w (dw) $\left[\frac{2}{3}w\right]$	
		= 2/3*	M1dep A1 [5]	substituting correct limits dep 1 st M1 NB AG	upper – lower, 1 to 4 for <i>u</i> or 1 to 2 for <i>w</i> or substituting back (correctly) for <i>x</i> and using 1 to 2	

Question		Answer	Marks	Guida	nce
2	(i)	(A) (0, 6) and (1, 4	B1B1	Condone P and Q incorrectly labelled (or	
		(B) -1, 5) and $(0, 4)$	B1B1	unlabelled)	
			[4]		
	(ii)	f'(x) = $\frac{(x+1)\cdot 2x - (x^2+3)\cdot 1}{(x+1)^2}$	M1	Quotient or product rule consistent with their derivatives, condone missing brackets	PR: $(x^2+3)(-1)(x+1)^{-2} + 2x(x+1)^{-1}$ If formula stated correctly, allow one substitution error
		$f'(x) = 0 \Longrightarrow 2x (x + 1) - (x^2 + 3) = 0$ $\Longrightarrow x^2 + 2x - 3 = 0$ $\Longrightarrow (x - 1)(x + 3) = 0$ $\Longrightarrow x = 1 \text{ or } x = -3$	A1 M1 A1dep	correct expression their derivative = 0 obtaining correct quadratic equation (soi) dep 1^{st} M1 but withhold if denominator also set to zero	condone missing brackets if subsequent working implies they are intended Some candidates get $x^2 + 2x + 3$, then realise this should be $x^2 + 2x - 3$, and correct back, but not for every occurrence. Treat this sympathetically.
		When $x = -3$, $y = \frac{12}{(-2)} = -6$ so other TP is $(-3, -6)$	B1B1cao	must be from correct work (but see note re quadratic)	Must be supported, but -3 could be verified by substitution into correct
-			[0]		derivative
	(iii)	$f(x-1) = \frac{(x-1)^2 + 3}{x-1+1}$	M1	substituting $x - 1$ for both x's in f	allow 1 slip for M1
		$=\frac{x^2 - 2x + 1 + 3}{x - 1 + 1}$	A1		
		$=\frac{x^2-2x+4}{x} = x-2+\frac{4}{x} *$	A1 [3]	NB AG	
	(iv)	$\int_{a}^{b} (x-2+\frac{4}{x}) dx = \left[\frac{1}{2}x^{2}-2x+4\ln x\right]_{a}^{b}$ $= (\frac{1}{2}b^{2}-2b+4\ln b) - (\frac{1}{2}a^{2}-2a+4\ln a)$	B1 M1 A1	$\begin{bmatrix} \frac{1}{2}x^2 - 2x + 4\ln x \end{bmatrix}$ F(b) – F(a) condone missing brackets oe (mark final answer)	F must show evidence of integration of at least one term
		Area is $\int_{0}^{1} f(x) dx$ So taking $a = 1$ and $b = 2$ area = $(2 - 4 + 4\ln 2) - (\frac{1}{2} - 2 + 4\ln 1)$ = $4 \ln 2 - \frac{1}{2}$	M1 A1 cao	must be simplified with $\ln 1 = 0$	or $f(x) = x + 1 - 2 + 4/(x+1)$ $A = \int_0^1 f(x) dx = \left[\frac{1}{2}x^2 - x + 4\ln(1+x)\right]_0^1 M1$
			[5]		$= \frac{1}{2} - 1 + 4 \ln 2 = 4 \ln 2 - \frac{1}{2} \text{ A1}$

3	$\int_{0}^{\pi/6} \sin 3x dx = \left[-\frac{1}{3} \cos 3x \right]_{0}^{\frac{\pi}{6}}$	B1	$\left[-\frac{1}{3}\cos 3x\right] \text{ or } \left[-\frac{1}{3}\cos u\right]$
	$= -\frac{1}{3}\cos\frac{\pi}{2} + \frac{1}{3}\cos 0$	M1	substituting correct limits in $\pm k \cos \ldots$
	$=\frac{1}{3}$	A1cao [3]	0.33 or better.

4(i) $y = 1/(1 + \cos \pi/3) = 2/3.$	B1 [1]	or 0.67 or better
(ii) $f'(x) = -1(1 + \cos x)^{-2} - \sin x$ $= \frac{\sin x}{(1 + \cos x)^2}$ When $x = \pi/3$, $f'(x) = \frac{\sin(\pi/3)}{(1 + \cos(\pi/3))^2}$ $= \frac{\sqrt{3}/2}{(1\frac{1}{2})^2} = \frac{\sqrt{3}}{2} \times \frac{4}{9} = \frac{2\sqrt{3}}{9}$	M1 B1 A1 M1 A1 [5]	chain rule or quotient rule $d/dx (\cos x) = -\sin x \text{ soi}$ correct expression substituting $x = \pi/3$ oe or 0.38 or better. (0.385, 0.3849)
(iii) deriv = $\frac{(1 + \cos x)\cos x - \sin x.(-\sin x)}{(1 + \cos x)^2}$ _ $\cos x + \cos^2 x + \sin^2 x$	M1	Quotient or product rule – condone uv' – u'v for M1
$= \frac{(1 + \cos x)^2}{(1 + \cos x)^2}$ $= \frac{\cos x + 1}{(1 + \cos x)^2}$	Al M1dep	correct expression $\cos^2 x + \sin^2 x = 1$ used dep M1
$= \frac{1}{1 + \cos x} *$ Area $= \int_0^{\pi/3} \frac{1}{1 + \cos x} dx$	E1	www
$= \left[\frac{\sin x}{1+\cos x}\right]_{0}^{\pi/3}$	B1	
$= \frac{\sin \pi / 3}{1 + \cos \pi / 3} (-0)$	M1	substituting limits
$=\frac{\sqrt{3}}{2}\times\frac{2}{3}=\frac{\sqrt{3}}{3}$	A1 cao [7]	or $1/\sqrt{3}$ - must be exact
(iv) $y = 1/(1 + \cos x)$ $x \leftrightarrow y$ $x = 1/(1 + \cos y)$	M1	attempt to invert equation
$ \Rightarrow 1 + \cos y = 1/x \Rightarrow \cos y = 1/x - 1 \Rightarrow y = \arccos(1/x - 1) * $	A1 E1	www
Domain is $\frac{1}{2} \le x \le 1$	B1	
	B1	reasonable reflection in $y = x$
	[5]	